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Abstract 
 
This report describes an overview and the progress to date of the Distributed Episodic 
Exploratory Planning (DEEP) project.  DEEP is a mixed-initiative decision support 
system that utilizes past experiences to suggest courses of action for new situations. It has 
been designed as a distributed multi-agent system, using agents to maintain and exploit 
the experiences of individual commanders as well as to transform suggested past plans 
into potential solutions for new problems. The system is mixed-initiative in the sense that 
a commander, through his or her agent, can view and modify the contents of the shared 
repository as needed. The agents interact through a common knowledge repository, 
represented by a blackboard in the initial architecture. The blackboard architecture is well 
suited for dealing with ill-defined, complex situations such as warfare.  
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1 Executive Summary 
 
This report describes an overview and the progress to date of the Distributed Episodic 
Exploratory Planning (DEEP) project.  DEEP is a mixed-initiative decision support 
system that utilizes past experiences to suggest courses of action for new situations. It has 
been designed as a distributed multi-agent system, using agents to maintain and exploit 
the experiences of individual commanders as well as to transform suggested past plans 
into potential solutions for new problems. The system is mixed-initiative in the sense that 
a commander, through his or her agent, can view and modify the contents of the shared 
repository as needed. The agents interact through a common knowledge repository, 
represented by a blackboard in the initial architecture. The blackboard architecture is well 
suited for dealing with ill-defined, complex situations such as warfare. 
 
The DEEP project was initiated in response to the need to support the key tenets of 
Network Centric Operations (NCO), namely information sharing, shared situational 
awareness, and knowledge of commander’s intent.  To that end, the project’s long-term 
goal is to develop, in-house, a prototype system for distributed, mixed-initiative planning 
that improves decision-making by applying analogical reasoning over an experience base. 
 
The core of this report documents the successful completion of the project’s short-term 
objective: the development of a “research platform” to further support more aggressive 
research in the areas of distributed Command and Control (C2) and analogical reasoning, 
and how to apply the technology to advance the state of C2.  This research platform 
implements DEEP’s high-level system-of-systems architecture comprised of the 
following systems: 

• Distributed Blackboard for multi-agent, non-deterministic, opportunistic 
reasoning 

• Case-Based Reasoning to capture experiences (successes and/or failures) 
• Episodic Memory for powerful analogical reasoning 
• Multi-Agent System for mixed initiative planning 
• ARPI Core Plan Representation for human-to-machine common dialog 
• Constructive Simulation for exploration of possible future states 

 
Our research platform implementation will serve the DEEP project both as a concept 
demonstration of how experience-based, distributed mixed-initiative planning can be 
accomplished in a network-centric environment, as well as an environment for 
conducting research on the individual systems needed to support this NCO vision.   This 
platform enables research in the areas of semantic extensions to CPR, our plan 
representation; the use of robust coherence to utilize the experiences from several agents 
to solve a problem; the leveraging of distributed database technology to provide 
persistent storage for plans and planning information; a speech-act-based messaging 
formalism for consistent communications among the distributed system; and the use of 
advanced simulation platforms to improve the fidelity of plan execution and analysis. 
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2 Introduction 
 
DEEP is a mixed-initiative decision support system that utilizes past experiences to 
suggest courses of action for new situations. It has been designed as a distributed multi-
agent system, using agents to maintain and exploit the experiences of individual 
commanders as well as to transform suggested past plans into potential solutions for new 
problems. The system is mixed-initiative in the sense that a commander, through his or 
her agent, can view and modify the contents of the shared repository as needed. The 
agents interact through a common knowledge repository, represented by a blackboard in 
the initial architecture. The blackboard architecture is well suited for dealing with ill-
defined, complex situations such as warfare.  
 

2.1 Problem Statement 
 
The U.S. and other highly industrialized nations have developed military capabilities that 
excel in conventional force-on-force warfare, especially where tactics are well developed 
and known. However, modern adversaries have devised the strategy of not going “head-
to-head” with these capabilities and instead combat modern conventional forces with 
unconventional tactics. One example of the result of a weapon system being vastly 
superior is the case of the air superiority fighter which modern adversaries totally avoid 
putting themselves in a position to contest them. 
 
To meet these future challenges, U.S. forces are in the midst of a “transformation” to not 
only support traditional high-tempo, large force-on-force engagements, but also smaller-
scale conflicts characterized by insurgency tactics and time-sensitive targets of 
opportunity. This transformation requires a vastly new C2 process that can adapt to any 
level of conflict, provides a full-spectrum joint warfighting capability, and can rapidly 
handle any level of complexity and uncertainty. 
 
To meet future challenges, the United States. Air Force (USAF) is moving towards a 
model of continuous air operations not bounded by the traditional 24-hour Air Tasking 
Order (ATO) cycle. Meeting these objectives will require a highly synchronized, 
distributed planning and replanning capability. As a potential way ahead, AF/A5 (Plans) 
released in May 2006 a revolutionary vision paper titled “C2 Enabling Concepts” (Braun, 
2006)depicting what a potential future C2 environment could be. Four key concepts 
emerged as being critical to the success of a future Air Operations Center (AOC): 
 

• Distributed/Reachback planning 
 “Today’s constantly engaged AOCs no longer focus on shifting from 

one relatively rare major combat operation to the next. Their challenge 
is day-to-day, steady state C2 of these continual lower-end 
contingencies.” 
 

• Redundant/Backup planning 
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 “AOCs can be geographically separated but electronically plugged into 
the battlespace so that they function as if their members were 
collocated.” 

• Continuous planning 
 “The supporting and supported AOCs will maximize use of distributed 

network capabilities to ensure information is backed up and the 
supporting AOC is prepared to assume operations should the engaged 
AOC encounter a catastrophic event that makes operations 
unsupportable.” 

• Flexible, scalable, tailorable C2 
 “..rapidly adapt to the level of conflict by connecting with worldwide 

capabilities, including joint and coalition forces.” 
 
Experience with recent operations also reveals that the C2 process must transition from a 
process of observation and reaction to one of prediction and preemption. To achieve this, 
we will need to go beyond the focus of military operations, and instead address the entire 
spectrum of Political, Military, Economics, Social, Infrastructure, and Information 
(PMESII) (Alberts & Hayes, 2007). 
 
To that end, the focus of the research reported here is on developing a C2 environment 
that supports the vision of Network Centric Operations (NCO) (Alberts & Hayes, 2007).  
The tenets of NCO are: 
 

• Information sharing 
• Shared situational awareness 
• Knowledge of commander’s intent 

 

2.2 DEEP Project Objective 
 
In response to the need to support these key NCO tenets, the long-term goal of the 
Distributed Episodic Exploratory Planning (DEEP) project is to develop, in-house, a 
prototype system for distributed, mixed-initiative planning that improves decision-
making by applying analogical reasoning over an experience base.  The two key 
objectives of DEEP are: 
 

• Provide a mixed-initiative planning environment where human expertise is 
captured and developed, then adapted and provided by a machine to augment 
human intuition and creativity. 

• Support distributed planners in multiple cooperating command centers to 
conduct distributed and collaborative planning. 
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That is, the architecture of DEEP was explicitly designed to support the key tenets of 
NCO in a true distributed manner. Because DEEP is not based on any current C2 system, 
we are able to explore concepts such as combining planning and execution to support 
dynamic replanning, to examine machine-mediated self-synchronization of distributed 
planners, and to experiment with the impact of trust in an NCO environment (e.g., “Good 
ideas are more important than their source”). 
 
Alberts and Hayes (2007) advocate bold new approaches beyond current organizational 
process, focusing on what is possible for NCO. High priority basic research topics 
recommended as areas to systematically explore are: 
 

1. Taxonomy for planning and plans; 
2. Quality metrics for planning and plans; 
3. Factors that influence planning quality; 
4. Factors that influence plan quality; 
5. Impact of planning and plan quality on operations; 
6. Methods and tools for planning; and 
7. Plan visualization 

 
This report describes our approach to achieving this vision of NCO and presents the 
progress to date on the development of the DEEP prototype, especially as it relates to 
these priorities. 
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3 Methods, Assumptions, and Procedures 
 
In this chapter we present an overview of the DEEP architecture, a description of the 
systems that comprise the DEEP prototype, and a discussion of how these systems 
interact.  In our development of this architecture, we have given careful consideration to 
Alberts and Hayes (2007) priorities (Section 2.2), noting that considerable attention has 
been given to the first research topic through the use of the Core Plan Representation 
(CPR) as the knowledge structure tying the system together. 
 

3.1 DEEP Architecture Overview 
 
DEEP is a system-of-systems architecture (Figure 1), comprised of the following 
systems: 

• Distributed Blackboard for multi-agent, non-deterministic, opportunistic 
reasoning 

• Case-Based Reasoning system to capture experiences (successes and/or 
failures) 

• Episodic Memory for powerful analogical reasoning 
• Multi-Agent System for mixed initiative planning 
• ARPI Core Plan Representation for human-to-machine common dialog 
• Constructive Simulation for exploration of possible future states 

 
The DEEP architecture also includes a messaging system, various knowledge objects, a 
shared data storage system, along with a number of agents, all described later in this 
chapter.  For convenience, we will describe the pieces in the architecture in the order in 
which they might be typically used.  One should bear in mind, however, that in this type 
of mixed-initiative system, there will rarely be a clean path from the initial planning 
problem to the final solution. 
 
Consider the system-of-systems architecture depicted in Figure 1.  The starting point for 
entry into the system occurs when a commander describes a new mission using a 
planning agent (1).  The planning agent allows for the commander to input information 
into the system which defines their current objectives. These objectives, along with other 
information, such as resources, locations, and time constraints, are collectively known as 
the situation. This situation is then placed on the shared blackboard (2).  The blackboard 
would in turn notify all registered systems of the existence of the new situation. Using the 
given situation, the other planning agents, with their associated case bases and cased-
based reasoning capabilities, would each search their case base for relevant past 
experiences (3).  These results are then modified to fit the current situation (4) and are 
posted to the blackboard as candidate plans (5).  Once the candidate plans are on the 
blackboard, they are adapted by specialized adaptation agents to further refine these 
plans to meet the current situation (6).  These plans are now ready to be critiqued by the 
critic agents.  
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Figure 1 - DEEP Architecture 

 
Critic agents concurrently scrutinize the candidate plans and score them based on their 
individual expertise (7).  Once the plans are scored, the execution selection critic gathers 
the adapted plans along with their scores, determines their overall scores, and selects a 
number of top rated plans to be executed (8).  The top rated plans are now executed 
(currently in a simulated environment) (9). Once a plan completes execution, the results 
are combined with the plan and assimilated back into the original planning agent’s case 
base (10). 
 
Although we have described this planning and execution as a single flow through the 
system, in reality few plans will execute without changes.  The DEEP architecture 
supports the modification of currently executing plans through feedback of partial results 
of plan execution into the blackboard.  This allows the plans to be run through the 
adaptation and critique processes as many times as needed. 
 
In the remainder of this chapter we present the various systems of the DEEP architecture 
mentioned in the above flow example. We begin with an explanation of the system-of-
system interaction facilities that underlie the DEEP prototype. 
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3.2 Systems Interaction 
 
Being a network-centric application, there is a strong emphasis in DEEP on how 
knowledge is passed and how that knowledge is encapsulated.  Before discussing the 
major structural systems of DEEP, we present a discussion on how the systems interact 
and on the knowledge objects that the systems process.  The next two sections discuss the 
main type of knowledge object used in DEEP and in the DEEP messaging system. 

3.2.1 Plan Representation 
 
The various DEEP systems all use a common knowledge representation to facilitate their 
interactions.  We know that the future of military planning is not just for the Air Force, 
but rather will involve participants from various agencies (both military and civilian), 
possibly planning at different levels of abstraction.  Thus, DEEP was designed to  
 
 
 

 
 

 
 
 
 
 
 
 
 

Figure 2 - Core Plan Representation 
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support plans for joint, coalition, and civilian operations as well handle plans at different 
abstraction levels (i.e., strategic, tactical, or operational).  Planning for heterogeneous 
operations also means that the plan representation has to be able to consider the semantics 
of terms used in the plan, ensuring agreement among all participants.  This is an ongoing 
research topic, discussed in detail in Section4.2.  Finally, because DEEP is a mixed-
initiative environment, the chosen plan representation must be easily machine-readable as 
well as presentable to a user. 
 
The ARPA-Rome Laboratory Planning Initiative (ARPI) conducted research on several 
plan representations. The culmination of that effort was the Core Plan Representation 
(CPR), shown in Figure 2. CPR was selected for DEEP as best meeting the above criteria.  
CPR is an object-oriented structure that is agnostic to the planning abstraction level (i.e., 
strategic, tactical, or operational) (Pease A. , 1998).  Its natural object oriented structure 
also lines up very well with the machine reasoning capability DEEP requires.  We have 
adapted the original CPR structure (Figure 2) to meet the needs of DEEP as they have 
evolved over time.   
 
In DEEP, CPR is used to represent individual experiences, or cases, which are composed 
of a plan, events, and one or more outcomes.  The attributes of the plan are used by the 
cased-based reasoning system (Section 3.3.3) to determine the similarity of past cases 
with the current situation.  Execution (currently through simulation) of the plan populates 
the events and outcome sections.  DEEP-CPR (Figure 3) was extended from the base 
structure shown in Figure 2 to support a much deeper reasoning capability of plans.  
 

3.2.2 System Messaging 
 
CPR is the foundation for the DEEP architecture and used by all components, thus a 
formalized messaging model is required for the interactions within the systems.  The 
systems that interact with one another include various types of agents along with the 
system blackboard.  To accomplish this, a formalized messaging scheme based on inter-
agent communication is required with a defined structure so that new systems are able to 
understand incoming messages as well as transmit their own. The DEEP architecture 
includes a formal messaging scheme to be used by the other systems. 
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In the current DEEP architecture, the communication protocol used is the publish-
subscribe communication paradigm through the blackboard. At a high level, systems 
subscribe to the blackboard and are notified when new information is added. Because of 
the push to create a functional proof-of-concept architecture, a simple taxonomy is 
currently in place to determine notification and message types until a more formalized 
communications protocol is established. The blackboard mediates all messaging using its 
defined messaging scheme and connectivity medium.  To prohibit the distributed 
planning aspect of DEEP deteriorating to “chat-room” type collaboration, an artificial 
barrier has been placed on human-to-human direct planning.  Therefore, agents of any 
kind (human or software) do not communicate with each other directly, but instead use 
the blackboard as a hub of communication.  For example, consider the mixed initiative 
scenario where a critic agent requires input from a user.  To obtain this input, the critic 
agent would send a message through the blackboard to the appropriate interface agent; 
the reply would similarly be routed back through the blackboard. 
 
As a more complex example, let us assume a simple setup of two planning agents (A and 
B), one blackboard, one critic agent, and one simulator.  All systems are registered with 
the blackboard for communication.  Planning Agent A becomes an engaged agent when 
its user inputs a new situation through the agent’s user interface. Planning Agent A in 
turn places this new problem on the blackboard. 
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Figure 3 - DEEP-CPR 
 
 
Once posted, the blackboard notifies registered systems with a message indicating the 
type of object (e.g., new problem situation) by broadcasting these messages.  The notified 
systems have to decide if the message is relevant to them.  This happens for all 
communication, so in our example when Planning Agent A posts a new situation, all 
registered system are notified, including critics who cannot do anything with a situation. 

3.3 Architecture 
 
We now explain the systems of the DEEP architecture that were mentioned in the 
previous section.  These systems are the distributed blackboard, interface agents, and 
critic agents.  The explanation will provide an understanding of how the pieces fit into the 
mixed-initiative distributed architecture of DEEP.   
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3.3.1 Blackboard – The Distributed Shared Knowledge Structure 
 
As can be seen from the DEEP architecture in Figure 1, the various DEEP systems rely 
on a shared knowledge structure to act as a medium of communication and interaction. 
Also, in order to support the NCO vision discussed in Section 2.1, the DEEP architecture 
requires a mechanism that supports reach-back in a distributed system. A blackboard 
system was chosen to fulfill this need as it not only functions as a shared memory for the 
DEEP system, but as we discussed in Section 3.1, it provides other functionality as well. 
 
A blackboard system is an opportunistic artificial intelligence application based on the 
blackboard architectural software engineering paradigm (Corkill, 1991).The blackboard 
system functions as a central knowledge store facilitating communication and interaction 
between the different software systems, including interface agents, critic agents, and 
simulation engines (explained later in this chapter). These interactions are made possible 
by the sharing and passing of objects. 
 
To fully meet the requirements of the DEEP vision for distributed C2, a distributed 
blackboard system was required. Current commercial and open source blackboard system 
implementations are not distributed, so the paradigm needed to be extended from a 
monolithic to a distributed environment.  The current DEEP blackboard, shown in Figure 
4, was designed and implemented following this extended view using design patterns 
described in (Hughes & Hughes, 2003). 
 
Traditionally, a blackboard consists of three discrete components: the blackboard 
knowledge structure which is a central repository for knowledge objects, the knowledge 
sources which are specialist software modules (agents in the DEEP software architecture) 
that provide specific expertise required by the system, and a control component which 
controls the flow of objects and problem-solving activity in the system (Corkill, 1991).  
Each of these systems will be described in detail in the following sections. 

3.3.1.1 Core Knowledge Structure 
 
The core knowledge structure (see Figure 4) of the blackboard is the global knowledge 
store labeled as “BB Data Structure” in the diagram. This knowledge structure holds the 
objects within the system and is accessible by all of the system’s knowledge sources. 
Because there could potentially be an extremely large number of objects placed on and 
contained within the blackboard at one time, blackboard data structures are 
conventionally divided in more than one way. These divisions are known as panes and 
layers, and could potentially contain further dimensions of separation (Corkill, 1991).  
 
In the DEEP architecture, the core knowledge structure is defined to provide certain 
functionality. The knowledge store component of the blackboard has been abstracted out 
to allow for future revisions and extensions to how and where the knowledge is stored. 
This interface allows the option for the backend of the blackboard to be replaced with a 
database or other high performance data store.  
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In DEEP’s current state, the core data structure is a matrix of hash tables. These hash 
tables within hash tables allow panes and layers to be identified by providing a unique 
key and utilized to divide the blackboard up into more manageable sections. Now that 
there is a global repository for data, software system may start to utilize it to solve 
problems. 

3.3.1.2 Knowledge Sources 

By connecting to the blackboard, an application has the ability to become a knowledge 
source of the blackboard system.  Knowledge sources are independent agents that 
provide specialized expertise that contributes to the solution of a problem. Figure 4 shows 
example knowledge sources from the DEEP architecture and an example of how a 
knowledge source could contribute external expertise to the blackboard. A key 
characteristic of knowledge sources in a blackboard system is that they require no 
knowledge of the other knowledge sources that are connected to the blackboard. They 
bring their specialized expertise to the system and do not rely on others to provide it. 
Each knowledge source is responsible for knowing when, what, and how it may 
contribute to the solution to the current problem on the blackboard (Corkill, 1991). 
 
 
 
 

Figure 4 - Distributed Blackboard Architecture 
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In the DEEP architecture, all systems must implement an interface provided by the 
blackboard in order to connect to it. The connection process includes connecting to the 
local blackboard proxy and registering with the blackboard for blackboard update event 
notifications (more on this in the control discussion in Section 3.3.1.3). So now there is a 
data store and knowledge sources are ready to place objects on it.  The next section 
discusses the control mechanism of the blackboard to facilitate the problem solving 
which will take place on the blackboard.   

3.3.1.3 Control 

There are several control system paradigms that may be employed when designing a 
blackboard system. It may be very centralized to the blackboard, distributed among the 
blackboard and knowledge sources, or pushed out to the knowledge sources, requiring 
them to facilitate their own control of contributions to the problem (Corkill, 1991). The 
blackboard system developed for the DEEP architecture splits the control between the 
blackboard application and its knowledge sources. The control component on the actual 
blackboard application directs communication among the distributed blackboards, where 
the knowledge sources are held responsible for choosing whether or not they should 
interact with new or updated objects on the blackboard, or even taking initiative and 
placing a new object on the blackboard without waiting for a blackboard event 
notification.  
 
The control component of the blackboard is also what enables multiple blackboards to 
remain synchronized and distributed. Because the control component manages all of the 
activity occurring within the blackboard system, it is able to control how information is 
distributed among the connected blackboards, as well as maintaining synchronization 
through the use of queues and messaging schemes. This is what allows the blackboard 
system to be viewed as a single logical blackboard, while physically there are multiple, 
synchronized replicated blackboards. When a new object is passed to the blackboard 
proxy by a knowledge source, it is passed through the control mechanism, which 
distributes it to all connected blackboard applications. After all the connected blackboard 
systems receive the new object, they are placed in their local data store waiting to be 
manipulated or retrieved.  
 
In addition to the three traditional blackboard systems, the distributed blackboard 
designed for DEEP includes additional components that are necessary for a distributed 
blackboard and uniform communication between the knowledge sources connected to the 
distributed blackboard system.   

3.3.1.4 Proxy 

The proxy is an interface provided by the blackboard that allows a knowledge source to 
connect and interface with it. This proxy connection is established using a network 
socket. Originally, a blackboard application was designed to be running on each 
computer that contains one or more knowledge sources.  However, because each 
knowledge source connects using a network socket, it may reside on a separate computer. 
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This proxy allows the interface to perform actions to the blackboard such as the posting 
and retrieval of objects. Other actions include the retrieval of an object by its unique 
identifier and the registration of new blackboard listeners. Similarly to the core data 
structure, the proxy interface could easily be extended to accommodate integration with 
other applications (new or existing) as needed. 

3.3.1.5 Blackboard Objects 

A well-defined common interaction language is also necessary for a successful 
blackboard system. To keep the distributed blackboard as flexible as possible, the 
blackboard provides a simple interface to the knowledge sources for objects to be placed 
on the blackboard. This interface forces objects placed on the blackboard to contain 
certain properties and functions so the blackboard can work with the object. The 
properties include the partition the object belongs to, a unique identifier (UID) for each 
object, and a timestamp. By implementing this interface, the object also becomes 
serializable, allowing it to be transmitted over a network socket.  

3.3.1.6 Blackboard Utilities 

One of the main blackboard utilities is the Packet. A packet in this context is utilized by 
the blackboard control system to send messages to other connected blackboards, and is 
what the knowledge sources receive when they get an update event from the blackboard. 
Depending on the packet type, it contains certain useful information, some containing 
blackboard objects.  
 
Another blackboard utility is the Blackboard Unique Identifier (BBUID), which is a 
unique identifier across a network. This UID is required for all blackboard objects, 
system, and knowledge sources. There are also other convenience utilities such as a log 
writer and properties file parser. 
 
The Distributed blackboard is an integral part of the DEEP architecture in that it provides 
the functionality and ability for the system to become distributed. Now that there is a 
distributed data structure, we can look at the DEEP knowledge sources and how they will 
utilize the blackboard.  

3.3.2 DEEP Agents 

The DEEP system uses two different types of agents.  The first type is called an interface 
or planning agent and the second type is a critic agent. 
 
Agents in the DEEP architecture extend and use the Java Agent DEvelopment (JADE) 
framework (Bellifemine, 2006). DEEP requires a distributed multi-agent system and a 
framework to help simplify the implementation of this system. JADE was chosen because 
it is fully implemented in Java, and supports these requirements.  
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3.3.3 Interface Agents 

Interface agents, also called planning agents, serve a dual purpose.  From the user 
perspective, these agents provide the interface into the DEEP system, enabling the user to 
input new situations and communicate with the DEEP system.  These agents also provide 
the wrapper for the user’s case base (representing his or her planning experiences) and 
incorporate a case-based reasoner that utilizes the case base for planning.  That is, these 
agents are the user front end for the planner and allow for mixed-initiative interaction 
with the system. 
 
 

 
 

Figure 5 - Case-based Planning 
 
 
 
 
DEEP uses jCOLIBRI (2008), an object-oriented framework in Java for building case-
based reasoning (CBR) systems. Figure 5 illustrates how the CBR cycle is applied to 
case-based planning used in the DEEP architecture. Case-based planning makes use of 
past experiences to implement new plans and retain their outcomes.  That is, “Case-based 
planning is the idea of planning as remembering” (Hammond, 1990). The planning agent 
allows the user of the system to input a situation using a user interface.  Once the operator 
feels comfortable with the input, the agent, via the user interface, allows the situation to 
be forwarded to the blackboard.  The situation includes statements about the problem’s 
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objective, locations, actors, resources, and times.  This is the primary way the system 
allows user interaction.  While interacting with the user interface, the operator can also 
view plans on the blackboard and view the case base associated with the planning agent.  
The case base for each planning agent will be unique. 
 
Once a situation has been placed on the blackboard, the blackboard will broadcast a 
message notifying all registered systems about the new problem.  The listeners in the 
other planning agents determine what type of object was placed on the blackboard, and 
react to a new situation by initiating cased-based reasoning for the new problem.  See 
Ford & Carozzoni (2007) for a complete explanation of the CBR process used in DEEP.  
The CBR process selects the best set of cases from its case base and posts them onto the 
blackboard as candidate plans.  Once the candidate plans are placed on the blackboard, 
they are processed by the critic agents (discussed in detail below in Section 3.3.4). 
 
Each planning agent is expected to have a unique case base, since each planning agent 
represents the experience of some entity or group of entities.  The case base of an entity 
can contain experiences of any kind. This variety is readily supported by DEEP’s plan 
representation, CPR, because of its ability to work with planning knowledge at different 
levels of abstraction. 
 
The interface/planning agent is indeed a multi-faceted entity, providing an interface to the 
user, an interface to a case base, and an interface to a reasoning engine.  These interfaces 
are important due to tight interaction of these systems.  Little processing is done by the 
planning agent itself, but rather by an external system that it interfaces with (e.g., 
jColibri).  The agent itself is the medium between the reasoning process and the 
blackboard as well as the human and the blackboard. Now that the plans are on the 
blackboard and ready for evaluation, it is time to discuss the critic agents. 

3.3.4 Critic Agents 
 
The term critic agent is used to describe a number of agents in DEEP that evaluate plans 
based on a number of criteria.  The criteria can be loosely coupled into the following 
categories: adaptation, critique, and execution.  Adaptation critics are plan refiners.  
Critique agents are evaluators of plans that score based on their own inherent knowledge.  
Execution critics determine ongoing plans in the DEEP cycle. All of these different types 
of critics are discussed in depth in the following paragraphs.   

3.3.4.1 Adaptation Critic Agents 

Adaptation agents in the DEEP architecture are software agents that specialize in further 
refining a plan based on their particular area of expertise. As explained earlier, the initial 
plan that is instantiated to the new situation and placed onto the blackboard is a “rough 
cut” and needs supplementary revision. When the adaptation critic agent receives 
notification from the blackboard that there is a new instantiated plan on the blackboard, it 
reviews the plan, makes its changes, and posts a new version of the plan with its 
adaptations. 
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There are many possibilities for different adaptation agent specializations. For a proof-of-
concept, a Capabilities Adaptation Agent was designed, developed, and integrated into 
the DEEP architecture. The Capabilities Adaptation Agent’s specialization is validating 
that the actors in the instantiated plan are capable of performing the actions to which they 
were assigned. In order to accomplish this, it first has to be determined what roles an 
actor is capable of performing and validate that it is consistent with the action to which it 
has been assigned. Actors in the DEEP architecture have both default roles as well as 
specialized roles for the situation that need to be taken into account. If a given actor is not 
capable of the role that has been assigned, a new actor must be found to replace it. The 
agent looks in the current situation for similar available actors, where similarity is 
determined by traversing an actor/role taxonomy and selecting one with a minimal 
semantic distance (Ford & Carozzoni, 2007). This new, similar actor then replaces the 
incapable actor in the action. After the agent has adapted this plan using its specialized 
knowledge, it then posts the updated plan to the blackboard.  
 
The use of Adaptation Agents is also an area where mixed-initiative interaction can once 
again be brought into the system. Interfaces could be made to allow the plan to be 
displayed to a user, either as a whole or in a specific way, which would allow the user to 
apply his or her expertise and adapt part of the plan.  
 
In the process discussed so far, a scenario has been created by specifying objectives, 
methods and resources that were then placed on the blackboard. Each planning agent has 
examined its case base to find similar situations and used them to instantiate a new plan 
based on its past experience. Now that the plans on the blackboard have been instantiated, 
and refined by multiple Adaptation Agents, they are ready to be scored and criticized by 
the Critique Agents.  

3.3.4.2 Critique Agents 

This category of agents can be quite extensive, but the present DEEP system only uses 
one for demonstration purposes.  The particular critique agent implemented is a weather 
agent, but the future possibilities include political, logistics, ethical, legal and cyber 
agents, among others. 
 
Scoring agents focus themselves on certain areas of a plan.  A weather agent, for 
instance, would focus on how weather impacts the plan and ignores other areas such as 
political fallout.  A legal agent would not focus on weather, but instead would focus on 
the legal aspects of the plan. These agents will find and use relevant data and ignore data 
that is of no concern to them.  Critique agents do not change the plan as adaptation agents 
do; rather, they only analyze how the plan may work in the particular subject area.  To 
have a subject area of expertise, these agents usually wrap or communicate with an 
outside knowledge source that specializes in that area.  The weather agent for example 
has a weather feed it can communicate with, an understanding of weather rules and the 
weather capabilities of actors in the plan.   
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During the DEEP process, critique agents use the adapted plans on the blackboard for 
evaluation.  The agents will use the data they need in the plan to further their processing.  
For example the weather agent will extract the location data contained in the plan and 
then use that location data to gain weather information using an external source, such as 
an RSS (Really Simple Syndication) feed.  Once the CPR plan object has been parsed for 
the needed data, the critique agent will process it.  The implementation behind evaluation 
will be different for each critique agent as will the data required for them out of CPR.  It 
is possible as new critique agents are added CPR will need to evolve to include more 
information.  Once evaluation has finished, these agents use a scoring algorithm to 
produce a score that is tied to that particular plan, which is posted to the blackboard. 
 
These agents follow a general technical scheme.  They implement the Java Agent 
Development (JADE) Framework, register to and setup listeners to the blackboard, have 
a knowledge source either internally or externally, have an evaluation implementation, 
and a scoring algorithm.  These agents can also use human sources as their knowledge 
base allowing for mixed initiative interaction. 

3.3.4.3 Execution Selection Critic Agents 

Once there are several plans that have been instantiated, adapted, and scored by the 
various agents in the DEEP system, a final agent is responsible for selecting the top 
scoring plan(s) and sending them off for execution. This agent is known as the Execution 
Selection Critic Agent. Its specialization is taking all of the information on the 
blackboard and using it to evaluate and rank the plans. It then either decides which 
plan(s) are to be executed by either prompting the user for mixed-initiative input, or 
selecting one on its own. 
 
The first challenge in developing the Execution Selection Agent was how to know when 
to notify the agent once the plans on the blackboard have converged. In other words, the 
problem was how an agent, which by design is not dependent upon other agents, knows 
when other agents are done accomplishing their tasks. The solution chosen was to utilize 
the message passing that was discussed in Section 3.2.2. The Interface agents broadcast a 
message containing information about how many instantiated plans they are posting on 
the blackboard. When the Adaptation Agents realize they have work to do, they notify the 
Execution Selection Agent to wait until their work is completed. Similarly, the Critique 
Agents notify the Execution Selection Agent to wait as well. The Execution Selection 
Agent receives all these messages and uses them to determine when the appropriate 
number of adapted plans and scores are placed on the blackboard. The Execution 
Selection Agent then keeps a count of all the adapted plans and scores that are being 
placed on the blackboard to determine when the plans have converged.   
 
After the agent realizes that the plans have converged, it then sorts the plans in order of 
best to worst. In order to sort the plans, it uses the scores associated with each plan to rate 
them. This functionality does not currently assign a weight to the scores; however, in the 
future it should.  
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The Execution Selection Critic Agent also has an interface to pass its plans to simulators 
to simulate the outcome of certain plans. The idea behind these simulations is that they 
would be simulation engines that could run quickly, in parallel, and could help give 
insight about the plans to the selection agent. A more detailed simulation will take place 
when the top rated plans have been selected. The following section will discuss the more 
detailed simulation engines and how they will be used.  
 
In our current proof-of-concept demonstration, the Execution Selection Agent sends a 
message to the Interface Agent containing the top rated plans. The user is then notified 
that he or she can view the top rated plans and select one to be sent off to the main 
simulation engine.   

3.3.5 Plan Execution 
 
After the Execution Selection agent has decided on the plans to be executed, the DEEP 
architecture notifies the execution component.  While in the long-term DEEP vision 
execution will be accomplished in the operational world, our current implementation uses 
simulation to test and evaluate plan execution.  The CPR object that has been passed 
around throughout this cycle contains plan information, but it also contains sections ready 
to be populated with the plan outcome and events.  The plan outcome section is crucial to 
future reasoning over the plans due to the need to understand what happened while 
executing that plan in a given context.  The simulator has to be able to produce an 
outcome with the results and how the results were obtained. This is important because it 
has to be able to document which objectives succeeded or failed and why.  This 
information will populate the events section.  An example might be the events leading up 
to the failure of a supply transport due to enemy interception.  The events would describe 
the specific happenings of that situation, including the enemy planes shooting down the 
tanker. 
 
Simulation in the DEEP cycle presently involves a randomly generated outcome tied to 
specific plans.  In Section 4.6 we discuss the avenues that are open in the near future for 
more realistic plan execution.  
 
Once simulated execution of a plan is complete, the user can review the plans on the 
blackboard.   Finally, complete plans containing events and results are assimilated into 
the case base of the engaged planning agent for future reuse. 
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4 Results and Discussion 
 
The previous chapters of this report have documented the principled architecture 
designed for the DEEP project. The explanation of the architecture has also been 
supplemented by the current prototype proof-of-concept example implementation of 
several of the DEEP software systems (Section4.1). The initial drive of the DEEP project 
was to build a research platform that was developed in a modular fashion allowing these 
future advancements to be easily retrofitted. In this chapter we discuss some of the 
specific goals that have been established for DEEP as future research areas where the 
DEEP system shall improve. 

4.1 Research Platform Demonstration 
 
The architecture and systems described in the previous chapter have been implemented in 
a research demonstration prototype.  A screenshot of the user interface from the 
demonstration implementation is shown in Figure 6.  This interface provides the user 
access to his/her case base of experiences, a view of the contents of the system’s 
blackboard, and a mechanism for view evolving plans.  This research platform will serve 
as the basis for all future research in the DEEP program, some of which is described later 
in this chapter. 
 

 
 

Figure 6 - DEEP Demonstration Prototype 
 
The experience-base of the current DEEP demonstration prototype (“Casebase” in Figure 
6) was based on the Battle for Guadalcanal (Aug 42 –Feb 43) and focused on joint 
aspects of the conflict and not just the management of the air assets. There was strong 
rationale for using Guadalcanal as the experience-base, including: 
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• It was an intense, full spectrum combined land/air/sea campaign 
• It had the first JFACC-like position (Operation Watchtower) 
• It had both traditional and asymmetric aspects 
• It included issues addressing cultures and technologies 
• It leveraged coalitions and alliances (i.e., Australians) 
• It was thoroughly documented and analyzed, a key aspect to facilitate case 

validation and verification 
 
For the demonstration scenario, a totally different type of mission was chosen: Operation 
Unified Assistance; the U.S. humanitarian response to the earthquake just north of 
Sumatra Island and the resulting tsunami. Currently, DEEP demonstrates the power of 
analogical reasoning in using the historical, military-focused Guadalcanal experience-
base to plan for a modern humanitarian relief operation. DEEP will be used to experiment 
with the capability of analogical reasoning to improved planning speed, plan quality, and 
plan creativity, with the vision of becoming a truly distributed planning capability in the 
future. 

4.2 Semantic CPR 
 
As discussed in Section3.2.1, the version of CPR that is used in the DEEP system 
(henceforth called DEEP-CPR to avoid confusion) uses a collection of informal 
taxonomies to represent plan-related information.  While the terms used in these (Pease & 
Carrico, 1997)taxonomies have meaning to the people who developed them, they are in 
fact merely collections of symbols that have no explicit meaning to the machine.  As 
such, the interpretation of this information must be programmed into the agents that 
interpret and manipulate plans represented in DEEP-CPR. 
 
In this section we present an approach to extending DEEP-CPR to leverage semantic 
technologies.  The goal of these extensions will be to allow plans in DEEP to be 
semantically self-describing.  This will allow developers of DEEP system, such as plan 
analysis agents, to create domain-independent approaches free of hard-coded DEEP-CPR 
Semantic Extensions 
 
As a first step, we are using RDF (Resource Description Framework) (Brickley & Guha, 
2002) as the foundational layer for the semantic extensions to DEEP-CPR. RDF was 
selected for its simplicity and flexibility to capture and express the semantics within the 
DEEP planning system.  Furthermore, we will attempt to ground the foundational DEEP-
CPR concepts with a commonly accepted upper ontology model, such as Suggested 
Merged Upper Ontology (SUMO) (Pease, Niles, & Li, 2002). 
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Figure 7 – Resource and Role Taxonomies 
 
 
For example, the Purpose slot of a Plan object would currently be filled in with a symbol 
from taxonomy, such as the one shown in Figure 7.  Using RDF, it might be represented 
as shown in Figure 8, which makes statements declaring that Objective is a subclass of, 
or part of, a Plan, and Purpose is a subclass of an Objective. These statements do not 
define the meaning of these terms, but rather provide relationships between the terms 
within a controlled vocabulary. 
 

<rdfs:Classrdf:about=”&cpr;Objective” 
 rdfs:label=”Objective”> 
 <rdfs:subClassOfrdf:resource=”&cpr;Plan”/> 
</rdfs:Class> 
<rdfs:Classrdf:about=”&cpr;Purpose” 
 rdfs:label=”Purpose”> 
 <rdfs:subClassOfrdf:resource=”&cpr;Objective”/> 
</rdfs:Class> 
 

Figure 8 - RDF Example 
 
Given the difficulty of reading and interpreting RDF statements in XML, these triples can 
instead be represented in a more simple form: 
 
<cpr:Objective rdfs:subClassOf cpr:Plan/> 
<cpr:Purpose rdfs:subClassOf cpr:Objective /> 
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4.2.1 URI Reference 
 
To support these extensions, the text-based entries of the DEEP-CPR objects will first be 
converted to Uniform Resource Identifiers (URIs). A URI is the fundamental building 
block of semantic technologies. A URI is a character string that encodes a networked 
resource, providing a structured and stable method for representing concepts and 
resources in a distributed information space. 
 
Unlike text-based identifiers, which are interpreted by each local system independently, a 
URI-based infrastructure provides a self-describing data model that ensures agreement on 
the concepts being used. This is similar to the pass-by-reference model used by modern-
programming languages, such as Java, in which information is passed as a pointer to a 
value rather than a copy of the value. Therefore, when the concept is changed at the 
source it is not necessary to copy those changes to all instances, since the pointer to that 
information does not need to change. 
 
HTTP is the most common protocol used to create URIs as it is well suited to resource 
indexing. In DEEP-CPR, a concept such as the Purpose of a plan could be represented as 
http://deep.af.mil/namespace/concepts#Purpose. The server containing the reference is 
deep.af.mil, with concepts being located in a namespace virtual directory on that server. 
The #Purpose is interpreted as the reference to the Purpose concept within the concepts 
page. 

4.2.2 RDF Metadata Model 
 
Once the DEEP-CPR entries are converted to URIs, they will be encoded into RDF 
statements.  RDF is an important component of semantic technologies being supported by 
the World Wide Web Consortium (W3C) and the semantic web community. It is a 
general-purpose language defined by the use of triples to identify and describe networked 
resources that are represented by URIs.   An RDF statement is a triple (S, P, O) in which: 
 

• S is a URI, the subject of the statement 
• P is a URI, the predicate of the statement denoting a relationship 
• O is either a URI or a literal (plain text) and represents the object or value of the 

predicate P for subject S 
 
RDF Schema (RDF-S) (Brickley & Guha, 2003)is a vocabulary that introduces additional 
structure to RDF allowing domain-independent definition of classes, subclasses, and 
properties. These structural concepts provide a means for declaring relationships between 
concepts that are generally understood without specific knowledge of the domain. It is 
this fundamental understanding that allows shared understanding between information 
spaces without explicit mapping and transformation. 
 

http://deep.af.mil/namespace/concepts#Purpose
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Figure 9 – Objective Decomposition 
 
For example, assume the existence of the following namespaces for rdfs and cpr, that 
define the RDF-S and CPR vocabularies. We can then define a case using the abbreviated 
syntax for a Case called Operation Unified Assistance. As in the example shown in 
Figure, search and rescue assistance will be provided to victims of a disaster in the Aceh 
region. Concepts that have a numbered suffix, such as Case2398, represent the actual 
internal concept name for unique identification within the system. Since it is possible—
even likely, given variations on the same plan—that two cases could have the same name, 
we cannot rely on the name of the case to distinguish it from another case (Nejdl, 2003). 
Instead, the name becomes a property of the concept via the hasName relationship. 
 

[Instance object types] 
<Case2398 rdfs:typecpr:Case/> 
<Obj8723 rdfs:typecpr:Objective/> 
<Pur4423 rdfs:typecpr:Purpose/> 
<Role6415 rdfs:typecpr:Role/> 
<Entity0123875 rdfs:typecpr:People/> 
<Loc23498 rdfs:typecpr:Location/> 
 
[Object properties] 
(Alexander, 2004)<Case2398 cpr:hasObjective Obj8723/> 
<Obj8723 cpr:hasName "Provide Search and Rescue in Aceh Region"/> 
<Obj8723 cpr:hasPurpose Pur4423/> 
<Pur4423 cpr:hasName "Support Victims"/> 
<Pur4423 cpr:hasRole Role6415/> 
<Pur4423 cpr:hasSubject Entity0123875/> 
<Role6415 cpr:hasTypecpr:Support/> 
<Entity0123875 cpr:hasName "Disaster victims in Aceh region"/> 
<Entity0123875 cpr:hasLocation Loc23498/> 
<Loc23498 cpr:hasName "Aceh"> 

 
Each of the concepts used will map to URIs that provide rich textual description defining 
the meaning of the term. This more explicit definition provides some guarantee that terms 
used will be based on agreed-upon meanings rather than local interpretation of a symbol. 
In addition, this self-describing format provides a set of constraints on parts of the plan 
that will support both comparison and reasoning for the system. 
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Unlike URIs, RDF statements cannot be stored on web servers as HTML pages. 
Therefore, it will be necessary to utilize RDF Stores within the DEEP architecture to 
provide storage of triples.  One likely option will be to use an Oracle database, as Oracle 
will be including support for storage and query of the RDF format (Alexander, 2004)in 
their next major version. Unlike URIs, RDF statements are more challenging to access in 
a distributed environment (Nejdl, 2003), although methods such as peer-to-peer (Cai, 
2004) indexing have been investigated. 

4.2.3 Semantic Technology Benefits and Challenges 
 
The use of semantic technologies as data structures provides significant benefit to both 
computational and user-based interaction with the information being stored.  These 
benefits include: 
 

• Expressive. Since each piece of information is attached to a base hierarchy of 
structural and functional relationships it can be given more description than a 
simple string name can provide. Issues such as individual meaning and context 
can begin to be represented and attached to information to be sure that it is used 
correctly by the systems that will process it. However, it should be noted the 
commitment to some first-order logics such as those provided by OWL may also 
limit the expressivity that can be provided (Pan, 2004). In addition, the notion of a 
meaning for a given concept will often differ between users, even those within 
one community of interest. Therefore, it can be a challenge to develop a common 
vocabulary that represents an agreed upon, shared meaning between multiple 
users and systems. Additionally, as the meaning of concepts changes over time 
there need to be established formal methodologies for making changes while still 
maintaining the integrity of the information being represented. 

• Abstraction. The hierarchical organization of formal ontologies provides a 
structure that can be directly interpreted as layers of abstraction. This provides an 
ideal computational structure for determining the more general classes that 
subsume a given concept within the case base. This structure could easily be used 
as a measure of similarity between individual and collections of concepts. Further 
discussion on the benefits and challenges can be found in (Wiederhold, 1994). 

• Descriptive. Unlike a flat database schema, the relationships provided by a 
semantic information space provide more description of the data field than its 
name and location. Each concept (and accordingly the name used to describe it) 
can be given any number of properties that provide both supplemental 
information as well as the relationship it has to other concepts that may be found 
in the information space. These additional descriptions, while providing new 
facets of reasoning, also make the information space more difficult to examine 
and update from a user perspective. Therefore, as this complexity increases 
attention should be given to ensuring that highly complex descriptions are 
organized in a way that can be navigated and validated by human users. 
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• Longevity. Formal definitions of information semantics provide a structure that 
can be represented beyond a specific data source. This allows for concept 
definitions that extend beyond a current snapshot of the world and enforce a more 
permanent interpretation. While this does not mean that the meaning of concepts 
cannot change, it does limit the misunderstandings that can occur based on the use 
of language alone. 

• Interoperability. While true context-based interoperability is not yet realized, the 
structure of semantics provides a more formal basis for promoting predictable 
data transformation between information spaces. By allowing information spaces 
to find matching concepts not only by name but also via structural and logical 
similarities, the likelihood of accurate mapping is increased significantly. 
However, mapping between these structures is rarely a one-to-one relationship 
that can be represented in a simple manner. More complex relationships between 
information spaces require sophisticated functional mappings that are difficult to 
design, maintain and validate. For example, a 3-wheeled vehicle may be classified 
as a motorcycle in one model, but have no direct mapping to a model that 
classifies all vehicles into 2-wheeled and 4-wheeled vehicle categories, even 
though motorcycle was previously mapped to the 2-wheeled concept. 

While most of these benefits are tempered by complications they still provide a more 
reliable basis for reasoning than can be provided by current flat data standards such as 
RDBMS and XML. This reasoning support provides significant benefit to the DEEP 
project by enabling query and inference capabilities that are focused on concepts and 
relations as opposed to words. 
 
However, there are many challenges that must be overcome before semantic technologies 
can be widely deployed and maintained by an information infrastructure.  This includes: 
 

• Building ontologies. Ontologies are commonly built as a manual process in which 
experts and knowledge engineers brainstorm a concept space and begin to 
formalize definitions. While this proves effective in smaller domains and 
information spaces it is often the case that the members of larger communities of 
interest cannot come to an agreement on the definition of some concepts. 
Depending on the degree of difference between these views it is sometimes 
impossible to represent both viewpoints in one ontological structure. Some of the 
varied methodologies for building ontologies are discussed in (Lopez, 1999). 

• Indexing ontologies. There are currently no standard methods for indexing and 
allowing searches over ontological concepts and relationships. While many tools 
allow for a keyword-based search it is often difficult to know exactly what term is 
used to describe these constructs. Given the ambiguous nature of language there 
are often many words that could be used to describe one concept. While 
significant work has been done regarding mapping ontologies to each other 
(Maedche, 2002), little work could be found that looked at an infrastructure to 
provide access to ontologies that have not yet been directly mapped to the local 
ontology. 
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• Ontology versioning. Just as the world changes constantly, so should ontologies. 
While it may hold that cars cannot fly today, someday that may change and an 
ontology describing cars will have to be re-engineered.  However, there may be a 
situation where a system that has a dependency or reliance on the original 
ontology to provide the same reasoning constructs it provided before. Therefore, 
it is vital that a reliable standard for publishing and access of ontology versions 
exist to allow for interaction between information spaces without unexpected 
change (Klein, 2001). 

• Structure vs. Flexibility. Since ontologies represent an “upper class” of data, it is 
important to be wary of the commitments made at the ontological level.  Any 
restrictions placed on a concept will be inherited by any instance that is a type of 
that concept.  If an ontology asserts that all cars are blue then it is not possible for 
an instance of a car under that ontology to be anything but blue. On the other hand 
if the ontology contains a concept Car that has no properties or relationship, it is 
nothing more than a symbol that provides no logical support.  Therefore, there is a 
balance that must be maintained between the amount of structure you impose at 
the ontology level and the amount of flexibility given to instances of the concepts 
that have been described. 

While working on the current implementation, we found that the landscape of possible 
specifications was both complex and confusing. For example, it was not initially clear 
what the differences were between RDF-S terms subClassOf and type. In addition, RDF-
S and OWL share some terms, making it difficult to distinguish between them. Also, we 
found that the currently available tools are premature and require extensive experience.  
In fact, RDF generated in one tool will often not open correctly in another tool due to 
subtle differences between them, even though they are both using the same 
representation.  Further, we believe that RDF encoded in XML format is a misleading 
representation for human readability even though it is ideal for machine-independent 
processing.  The hierarchical representation reflected by XML encoding is not directly 
applicable to the structure of the RDF triplets.  
 
However, we believe that the benefits gained should outweigh the shortcomings.  Our 
recommendation to the C2 Community is to invest time and effort into understanding and 
applying semantic technologies in the form of abstract domain ontologies.  More 
specifically, we suggest using the RDF and RDF-S frameworks as the foundational layer 
to encode and externalize the semantic concepts within their respective domain.  Doing 
so will enable complex reasoning and portability in the long-term while providing the 
benefits of lightweight hierarchical reasoning and modularity in the short-term. 

4.3 Multi-Case Reconciliation 
 
In DEEP, agents exchange and utilize experiences to solve problems.  An interesting 
challenge that we are exploring is finding a way to use the experiences from several 
agents to solve a problem.  In this section, we discuss the notion of robust coherence.  
Robust coherence involves establishing the truth of experiences in both the collective 
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context of the problem and the objective world the problem is concerned with.  An agent 
will present a problem, which will be addressed by different agents by allowing each 
agent to suggest experiences for adaptation.  Those experiences will be selected based on 
their coherence in the collective view of the problem.  Also, that set of experiences will 
be challenged by critical rationalism to maintain correspondence with the dynamic 
world.  We will begin with an explanation of coherence and conclude this section with a 
discussion of critical rationalism and how to apply it.  Then we will discuss DEEP’s 
Ensemble Case Knowledge (DECK), an algorithm for establishing robust coherence 
within DEEP.  Ford and Lawton (2008) discuss a more detailed outline of this algorithm 
and its current implementation. 

4.3.1 Coherence 
Thagard and Verbeurgt (1998) discuss coherence in philosophical, psychological, and 
computer science terms.  Philosophically, coherent knowledge is knowledge that is 
mutually supportive in an overall context of justification.  In simple terms, establishing 
coherence involves establishing constraints, and satisfying those constraints by sorting 
elements into either accepted or rejected sets.  Solving this constraint satisfaction 
problem allows a reasoner to determine what information is mutually supportive in an 
overall system of beliefs.  This becomes more complex in the establishment of these 
constraints, and the many algorithms that are available to solve the resulting constraint 
satisfaction problem.   
 
This approach requires the establishment of positive constraints and negative constraints.  
Certain relations can be characterized as coherent (such as explains, associates, or 
facilitates), while others denote incoherence (such as incompatible, contradictory, or 
inconsistent).  Elements that are related by a coherent relation are positively constrained, 
while elements related by an incoherent relation are negatively constrained.   
Fulfilling the constraints established by these relations consists of sorting elements into 
the appropriate set, accepted or rejected, based on their constraints.  Positively 
constrained elements are either both accepted or both rejected.  The two elements that are 
positively constrained must be sorted into the same set.  Negative constraints are satisfied 
by accepting one or the other element involved.  The two elements that are negatively 
constrained cannot be sorted into the same set.  Logically, this is equivalent to treating 
positive constraints as an AND operation, and negative constraints as an XOR operation.  
However, this system attempts to maximize constraint satisfaction, which means that not 
all constraints need to be met, just as many as possible. 
 
Constraints will be satisfied or violated based on a strength value.  This strength value 
indicates how much a constraint contributes to the overall coherence of the system.  A 
constraint satisfaction problem solver determines the most coherent sorting based on 
these strength values.  Constraints may be upheld or violated based on the combination 
that leads to the greatest coherence.  This allows the elements in the system to be 
accepted or rejected based on the overall coherence of the system. 
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We can use this notion of coherence to choose a set of experiences that will be acceptable 
to use in planning or prediction, because they are coherent with the world view 
established by the group of cooperating agents.  In this way, suggested experiences exist 
in an overall context established by the whole group of agents.  Expertise is exchanged 
collectively, leading to shared understanding of a problem. 
 
While this form of coherence may appear to be useful to establish truth, there is the 
danger of forming a coherent truth that is circular in nature.  That is, forming a set of 
experiences that mutually support one another as coherent, but do not actually correspond 
to the outside world and how it really works.  Moreover, there could be multiple coherent 
systems of experiences which lead to alternate world views.  Some or none of these 
equally plausible interpretations could correspond with reality.  For this reason, we must 
be able to establish coherent collections of experience that also correspond with the 
current reality of a situation. 

4.3.2 Critical Rationalism 
“It is an old maxim of mine that when you have excluded the impossible, whatever 
remains, however improbable, must be the truth” (Doyle, 1892) 
 
To address these problems, we turn to another form of reasoning to help inform 
coherence as an epistemology: a more deductive view of truth that seeks to refute theories 
based on inconsistency with evidence.  Reid and Griffin (2003) discuss this method of 
reasoning as critical rationalism.   
 
Under critical rationalism, theories are postulated and stood to the test of falsification.  In 
other words, theories are considered which are potentially falsifiable, and then compared 
to a set of observations.  If the theory holds up to this set, compared to competing 
theories, it is considered the least untrue (rather than most true).  The measure of this 
aspect of truth is known as verisimilitude (Reid & Giffin, 2003).  Logically, critical 
rationalism is based on deduction, rather than induction.  This means that verisimilitude 
measures the degree to which a theory is able to stand up to criticism based on what it 
deduces should be true. 
 
Reid puts this understanding of knowledge forth as a way to allow military planners to 
communicate evidence.  Under this approach, the utility of information is based on its 
value in refuting theories, and the importance of doing so.  Because an exhaustive search 
of the complicated world for a complete set of counterexamples is impossible, theories 
are ranked based on their level of repudiation, not on their level of truth.  Communication 
establishes a reasonable level of verisimilitude for theories, understanding that a complete 
measure is unattainable. 
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We can use verisimilitude to better inform a coherent set of experiences by attempting to 
locate information that refutes some of the aspects of the experiences.  By doing this, we 
establish the degree of false-ness in those experiences for facing a current problem, and 
avoid the pitfall of blindly applying experience.  This is what makes robust coherence 
different from ordinary coherence.  Rather than relying on coherence as the only 
mechanism of justification for beliefs, robust coherence uses critical rationality to 
establish the “anti-justification” of beliefs. 
 
DECK uses coherence informed by critical rationality to create set of coherent, robust 
experiences that address a specific problem.  The counterexamples for experiences allow 
us to examine how those experiences’ utility is inhibited by facets of the ever-changing 
world.  In this way, critical rationalism can also indicate critical conditions in the world, 
allowing for the discovery of new goals.  In the following section, we will examine the 
mechanisms DECK employs to accomplish a system of robust coherence. 

4.3.3 Planning in DECK 
 
Deliberative coherence is an approach that can be used to determine the appropriate 
actions and goals in a situation (Thagard & Milligram, 1995).  In DECK, plans are 
formed from previous experience by using actions and goals from recalled experiences as 
the initial factors in a system of deliberative coherence.  This system is populated with 
facilitation and incompatibility relations that allow the system of coherence to be solved.  
This means that deliberative coherence does not have to be utilized from scratch, but 
rather can be accomplished by an ensemble of competent case-based agents.   
 
As different agents suggest experiences from their own case bases, DECK interprets the 
actions and goals from these experiences in a system of deliberative coherence.  This 
reasoning establishes the positive and negative constraints between these portions of 
experience, allowing a collective set of actions and goals to emerge as coherent.  This 
collective set can then be adapted and de-conflicted as a cohesive plan. 
 
Throughout this entire process, these experiences are treated like hypotheses by a system 
of critical rationalism.  That is to say, as counterexamples that contradict elements of the 
experiences enter the system, they weaken the strength of the relations posited by the 
system of deliberative coherence.  Because the strength of the relationships indicates the 
strength of the constraints in the constraint satisfaction problem, relations with more 
counterexamples are less likely to be upheld in the constraint satisfaction problem.  In 
this way the solution to the constraint satisfaction problem achieves a system of robust 
coherence that follows the view of truth established by collective experience and also 
adheres to the evolving reality of the situation. 
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4.4 Distributed Database Management System  

As discussed in Section 3.3.1, DEEP utilizes a distributed blackboard as the central data 
structure for knowledge sharing and communication among its various systems.  The 
current implementation (Figure 4) achieves its distributed capabilities by automatically 
replicating information stored in the primary blackboard module to the remotely 
connected machines.  This is not a robust solution, however, as information may be lost if 
one of the blackboard modules dies. 
 
To address this shortcoming, we will be replacing the data store component of the 
blackboard with an Oracle (version 10g/11g) database so that we may leverage its 
distributed functionality (Figure 10). By utilizing this commercial database system, we 
can offload many of the issues inherent with a distributed system such as transaction 
support. We are currently working on integrating a new persistence component that will 
replace the in-memory data store with a Java interface connecting to an Oracle database. 
With a connection to an Oracle database management system, not only will we be able to 
utilize it as a high performance blackboard data store, it will also provide DEEP with a 
popular integration medium for future integration efforts.  
 

 
 
 
 

Figure 10 - Distributed Blackboard Architecture 
using DDBMS 
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4.5 Formalized Messaging Structure 

The messaging system currently employed by DEEP is a simple scheme containing a 
small number of unique message types, drawn from a taxonomy. One of the reasons to 
improve the messaging system is to separate the messaging structure from current system 
so it may be updated and improved as its own component, having minimal impact on the 
system. The future vision is to leverage research done in speech act theory (Cohen & 
Perrault, 1979) and to formalize a message structure for communication between the 
various systems of the DEEP system.  The JADE Agent Communication Language 
(ACL) (Bellifemine, 2006)does have some basis in speech act theory, but we need to go 
beyond relying on the structure of JADE and have a structure that anything in DEEP can 
adhere to.  Instead, we expect to develop a semantically driven language for the system to 
communicate.  The key is that the communicating entities will be involved in a 
communication where negotiations can happen.  By designing a separate and formalized 
messaging structure in the DEEP project, it will lead to a more robust architecture to be 
used as a research platform. 

4.6 Plan Execution Simulation Options 

In Section 3.3.5, DEEP’s plan execution simulation was walked through.  DEEP is an 
agent-based system for experienced-based planning and is not developing simulation 
technology. Instead, DEEP will leverage either COTS simulation packages (i.e. John 
Tiller's Modern Air Power) or GOTS simulation packages (i.e. Joint Synthetic Forces) to 
wargame DEEP-developed plans. We intend on only writing just enough "glue code" 
between DEEP and other simulation systems to hand off developed plans for simulation 
and in turn to receive the results.  The current rudimentary simulation environment 
currently used in DEEP is a placeholder for future simulation capabilities.  For proof-of-
concept, the current simulation produces a randomly generated outcome for the plan 
being simulated.  We are considering several simulation alternatives to replace this 
simple approach.   
 
The first option under consideration is a war-gaming simulator called Modern Air Power 
(MAP) (Tiller, 2005). Working with Dr. Tiller, our in-house team has developed a 
programmatic interface to create and control the actions of the various objects in MAP, 
and to receive feedback on the effects of those actions.  The feedback portion of this 
interface is particularly important, as it is used to make dynamic changes to an executing 
plan, and to provide outcome information that is included with the plan when it is 
assimilated back into the case base of experiences. The MAP game engine was designed 
to support tactical simulation, although it has the ability to model the effects-based 
operations of a given plan.   Because of this design focus, a key challenge of the ongoing 
MAP interface work has been deriving cases with sufficient information to drive the 
detailed MAP scenarios. 
 
A second option for the plan execution simulation is an asymmetric agent-based 
adversarial reasoning simulator called DEEPa, which is being developed by Czech 
Technical University (CTU) under AFRL/RISB contract (FA8655-07-1-3083).  The 
primary goal of the DEEPa project is the capability to derive opponent behavior patterns.  
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That is, unlike the MAP simulation, the DEEPa project is using a real-time simulation 
environment that provides sufficient feedback to interpret adversarial actions.  Using this 
information, an adversarial modeling component of DEEPa (Pechoucek, Tozicka, & 
Rehak, 2006) is able to infer the adversary’s intent and dynamically adapt running plans 
accordingly. 
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5 Conclusions 
 
In this report we have presented an overview and the progress to date of the Distributed 
Episodic Exploratory Planning (DEEP) project. The DEEP project was initiated in 
response to the need to support the key tenets of Network Centric Operations (NCO), 
namely information sharing, shared situational awareness, and knowledge of 
commander’s intent.  To that end, the project’s long-term goal is to develop, in-house, a 
prototype system for distributed, mixed-initiative planning that improves decision-
making by applying analogical reasoning over an experience base. 
 
The core of this report documents the successful completion of the project’s short-term 
objective: the development of a “research platform” to further support more aggressive 
research in the areas of distributed C2 and analogical reasoning, and how to apply the 
technology to push C2 toward being more Network-Centric.  This research platform 
implements DEEP’s high-level system-of-systems architecture comprised of a distributed 
blackboard, case-based reasoning agents that utilize episodic memories, a system of 
distributed mixed-initiative planning agents, constructive plan execution simulation, and 
the ARPI Core Plan Representation (CPR). 
 
Our research platform implementation will serve the DEEP project both as a concept 
demonstration of how experience-based, distributed mixed-initiative planning can be 
accomplished in a network-centric environment, as well as an environment for 
conducting research on the individual system needed to support this NCO vision.   We 
are currently pursuing research in the areas of: semantic extensions to CPR, our plan 
representation; the use of robust coherence to utilize the experiences from several agents 
to solve a problem; the leveraging of distributed database technology to provide 
persistent storage for plans and planning information; a speech-act-based messaging 
formalism for consistent communications among the distributed system; and the use of 
advanced simulation platforms to improve the fidelity of plan execution and analysis. 
 
The future for DEEP is an exciting one.  Although the DEEP project is not focused on 
building specific tools to hand off to any particular AF-focused customers, we do have a 
transition path in mind. DEEP will develop and demonstrate technology along with an 
extensible architecture that supports the long-term vision of distributed planning 
augmented with analogical reasoning.  The transition plans are based on three activities, 
two of which are discrete events, one is a continuous: the SAB 2009 Information 
Directorate review, JEFX 2010, and a JFCOM/DARPA collaboration and hand-off. 
 
While not direct transition vehicles, a well-received SAB demonstration and an 
impressive participation in JEFX 2010 may open doors to a direct transition vehicle. In 
the current environment, DARPA, which is project-focused, represents a likely transition 
vehicle. DARPA recently has focused on joining with JFCOM J9 (Joint Concept 
Development & Experimentation Directorate) and leveraging the Joint Futures 
Laboratory (JFL). While SAB 2009 and JEFX 2010 are discrete events two years into the 
future, the JFCOM/DARPA activity can occur as soon as DEEP can demonstrate a 
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distributed planning demonstration using analogical reasoning.  Through this 
demonstration, DEEP would expect to obtain advocacy from the operational community 
to enable funding for the future R&D of the complete DEEP system.  Alternatively (or 
even in parallel), once we have a demonstrable prototype DEEP system, we can approach 
DARPA to develop a program to further develop and advance the state of the art in the 
key research areas of the DEEP architecture.  This avenue would allow us to increase the 
Technology Readiness Level of the DEEP prototype to facilitate its transition to an 
operational environment. 
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7 Symbols, Abbreviations and Acronyms 
 
ACL Agent Communication Language 
AFRL  Air Force Research Laboratory 
AOC Air Operations Center 
BBUID Blackboard Unique Identifier 
C2 Command and Control 
CBR Case-Based Reasoning 
CPR Core Plan Representation 
CTU Czech Technical University 
DARPA Defense Advanced Research Projects Agency 
DECK DEEP’s Ensemble Case Knowledge 
DEEP Distributed Episodic Exploratory Planning 
JADE Java Agent DEvelopment Framework 
JEFX Joint Expeditionary Force Exercise 
JFCOM Joint Forces Command 
JFL Joint Futures Laboratory 
MAP Modern Air Power 
NCO Network Centric Operation 
PMESII  Political, Military, Economics, Social,  
 Infrastructure, and Information 
R&D Research and Development 
RDF Resource Description Framework 
RDF-S RDF Schema 
RSS  Really Simple Syndication 
SAB Scientific Advisory Board 
SUMO Suggested Merged Upper Ontology 
TRL Technology Readiness Level 
UID Unique Identifier 
URI Universal Resource Indicator 
USAF United States Air Force 
 
 




